Gaofenzi.org小编吐槽:对3d打印行业而言,目标不是替代传统加工技术(好多朋友老以为3d打印是为了替代注塑),而是做一些传统技术根本就完成不了的工作,重点在于结构设计,设计是3d打印领域核心的之核心。
本文推荐的理由:本文的重点不是石墨烯,而是材料结构设计以及实现方法。
详细的中文介绍见这里
参考文献:The mechanics and design of a lightweight three-dimensional graphene assembly,Science Advances 06 Jan 2017:Vol. 3, no. 1, e1601536,DOI: 10.1126/sciadv.1601536
作者:Chendong Zhang1, Chih-Piao Chuu2, Xibiao Ren3, Ming-Yang Li4,5, Lain-Jong Li4,5, Chuanhong Jin3, Mei-Yin Chou2,6,7 and Chih-Kang Shih1,*
Abstract
Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials.